Note
Click here to download the full example code
Plotting Earth relief¶
Plotting a map of Earth relief can use the data accessed by the
pygmt.datasets.load_earth_relief
method. The data can then be plotted using the
pygmt.Figure.grdimage
method.
import pygmt
Load sample Earth relief data for the entire globe at a resolution of 30 minutes. The other available resolutions are show at https://docs.generic-mapping-tools.org/latest/datasets/remote-data.html#global-earth-relief-grids.
grid = pygmt.datasets.load_earth_relief(resolution="30m")
Out:
gmtwhich [NOTICE]: Remote data courtesy of GMT data server OCEANIA [https://oceania.generic-mapping-tools.org]
gmtwhich [NOTICE]: Earth Relief at 30x30 arc minutes from Gaussian Cartesian filtering (55 km fullwidth) of SRTM15+V2.1 [Tozer et al., 2019].
gmtwhich [NOTICE]: -> Download grid file [395K]: earth_relief_30m_p.grd
Create a plot¶
The pygmt.Figure.grdimage
method takes the grid
input to
create a figure. It creates and applies a color palette to the figure based upon the
z-values of the data. By default, it plots the map with the turbo CPT, an
equidistant cylindrical projection, and with no frame.
fig = pygmt.Figure()
fig.grdimage(grid=grid)
fig.show()
Out:
<IPython.core.display.Image object>
pygmt.Figure.grdimage
can take the optional argument projection
for the
map. In the example below, the projection
is set as "R12c"
for 12 centimeter
figure with a Winkel Tripel projection. For a list of available projections,
see https://docs.generic-mapping-tools.org/latest/cookbook/map-projections.html.
fig = pygmt.Figure()
fig.grdimage(grid=grid, projection="R12c")
fig.show()
Out:
<IPython.core.display.Image object>
Set a color map¶
pygmt.Figure.grdimage
takes the cmap
argument to set the CPT of the
figure. Examples of common CPTs for Earth relief are shown below.
A full list of CPTs can be found at https://docs.generic-mapping-tools.org/latest/cookbook/cpts.html.
Using the geo CPT:
fig = pygmt.Figure()
fig.grdimage(grid=grid, projection="R12c", cmap="geo")
fig.show()
Out:
<IPython.core.display.Image object>
Using the relief CPT:
fig = pygmt.Figure()
fig.grdimage(grid=grid, projection="R12c", cmap="relief")
fig.show()
Out:
<IPython.core.display.Image object>
Add a color bar¶
The pygmt.Figure.colorbar
method displays the CPT and the associated Z-values
of the figure, and by default uses the same CPT set by the cmap
argument
for pygmt.Figure.grdimage
. The frame
argument for
pygmt.Figure.colorbar
can be used to set the axis intervals and labels. A
list is used to pass multiple arguments to frame
. In the example below,
"a2500"
sets the axis interval to 2,500, "x+lElevation"
sets the x-axis
label, and "y+lm"
sets the y-axis label.
fig = pygmt.Figure()
fig.grdimage(grid=grid, projection="R12c", cmap="geo")
fig.colorbar(frame=["a2500", "x+lElevation", "y+lm"])
fig.show()
Out:
<IPython.core.display.Image object>
Create a region map¶
In addition to providing global data, the region
argument for
pygmt.datasets.load_earth_relief
can be used to provide data for a specific
area. The region
argument is required for resolutions at 5 minutes or higher, and
accepts a list (as in the example below) or a string. The geographic ranges are
passed as x-min/x-max/y-min/y-max.
The example below uses data with a 5 minute resolution, and plots it on a
15 centimeter figure with a Mercator projection and a CPT set to geo.
frame="a"
is used to add a frame to the figure.
grid = pygmt.datasets.load_earth_relief(resolution="05m", region=[-14, 30, 35, 60])
fig = pygmt.Figure()
fig.grdimage(grid=grid, projection="M15c", frame="a", cmap="geo")
fig.colorbar(frame=["a1000", "x+lElevation", "y+lm"])
fig.show()
Out:
grdblend [NOTICE]: Remote data courtesy of GMT data server OCEANIA [https://oceania.generic-mapping-tools.org]
grdblend [NOTICE]: Earth Relief at 5x5 arc minutes from Gaussian Cartesian filtering (9 km fullwidth) of SRTM15+V2.1 [Tozer et al., 2019].
grdblend [NOTICE]: -> Download 180x180 degree grid tile (earth_relief_05m_p): S90E000
<IPython.core.display.Image object>
Total running time of the script: ( 0 minutes 10.135 seconds)